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Введение
В теории безспиновой квантовой механики наиболее общий вопрос о со-
стоянии системы можно изучать, меняя ее гамильтониан и расчитывая
временное изменение волновой функции или отдельных наблюдаемых
величин. Такие задачи часто не имеют точного решения, однако, приме-
няя к ним различные методы, удается получить результат аналитически,
избегая численного решения задачи. В данной работе рассматриваются
как раз подобные случаи, когда при заданном начальном состоянии тре-
буется узнать, как эволюционирует система в условиях нового Гамильто-
ниана, для которого подготовленное состояние не является собственным.

1 Выключение гармонического осциллятора
Условие. Частица находится в основном состоянии в потенциале гар-
монического осциллятора. Потенциал выключают на время t, а затем
снова включают. Найти вероятность того, что частица останется в ос-
новном состоянии.

Решение.Введем обозначения k2 =
2mω

~
. Разложим заданную функ-

цию начального состояния по собственным функциям гамильтониана
свободной частицы. Для этого представим заданный волновой пакет как
интеграл Фурье

Ψ(k, x, t) = C(k)ei(kx−wt)

Ψ(x, t) =

∞∫
−∞

Ψ(k, x, t)dk
(1)

Вспоминая, чему равна волновая функция основного состояния

Ψ0 =
(mω
π~

)1/4
exp[−mω

2~
x2] (2)

определим ее в начальный момент в соответствии с разложением:

Ψ(x, 0) =

∞∫
−∞

C(k)eikxdk (3)
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Коэффициенты интеграла Фурье будут выражаться

C(k) =
1

2π

∞∫
−∞

e−ikxΨ(x, 0)dx =
1

2π

(mω
π~

)1/4 ∞∫
−∞

exp[−mω
2~

x2 − ikx]dx =

=

(
a2

π

)1/4
1√
2π
exp[−1

2
a2k2] (4)

С учетом полученного выражения, (
mω

~
=

1

a2
), зависящая от времени

функция будет выражаться интегралом:

Ψ(x, t) =

(
a2

π

)1/4
1√
2π

∞∫
−∞

exp[−1

2
a2k2 + ikx− i ~t

2m
k2]dx (5)

Вычисления приводят к результату

Ψ(x, t) =
(1/a2π)1/4

(1 + i
~t
ma2

)1/2
exp[− x2

2a2
(

1 + i
~t
ma2

) ] (6)

Тогда вероятность определяется как квадрат модуля скалярного произ-
ведения эволюционировавшей волновой функции и основного состояния.

W0 =

∣∣∣∣∣∣
∞∫

−∞

ψ(x, t)

(
1

a2π

)1/4

exp[− x2

2a2
]dx

∣∣∣∣∣∣
2

=
1√

1 +

(
tω

2

)2
(7)

Видно, что волновая функция расплывается со временем, причем тем
сильнее, чем больше частота колебаний осциллятора, т.е. чем уже был
спектр, тем быстрее он растет. Так же из вида волновой функции видно,
что в произвольный момент времени она остается гауссианом.

2 Квазистационарные уровни
Условие. Найти квазистационарные уровни и их времена жизни для
частицы в одномерном потенциале

U(x) =

+∞, x < 0
~2κ
m

δ(x− a), x > 0, a > 0
(8)
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Решение.Уравнения Шредингера для областей a > x > 0 и x > a
будут давать решение в виде волновой функции свободной частицы.

ψ(x) =

{
A sin(kx), a 6 x > 0

B sin(kx+ φ), x > a
(9)

На границе потенциального барьера производная волновой функции бу-
дет терпеть разрыв 2κψ(a), это нетрудно показать, проинтегрировав
уравнение Шредингера вблизи потенциального барьера

∫ a+

a−

(
− ~2

2m
ψ′′ +

~2

m
κδ(x− a)ψ

)
dx =

∫ a+

a−
Eψdx (10)

ψ′(a+)− ψ′(a−) = 2κψ(a) (11)

Тогда, нормируя волновую функцию в области x > a, так, чтобы поток
вправо был равен единице, составим уравнения для определения волно-
вой функции с учетом граничных условий:

sin(ka+ φ) = A sin(ka); (12)
k cos(ka+ φ) = kA cos(ka) + 2κA sin(ka) (13)

Поделив второе уравнение на первое, получаем соотношения для опре-
деления фазового сдвига и амплитуды волновой функции в добарьерной
зоне

k ctg(ka+ φ) = k ctg(ka) + 2κ (14)

k2 cos2(ka+ φ) = k2 − A2k2 sin2(ka) =

= k2A2 cos2(ka) + 4κA2 sin2(ka) + 4kκA2 sin(ka) cos(ka) (15)

Приведенное к виду

1

A2
= 1 + 2

κ
k

sin(2ka) + 2
(κ
k

)2
(1− cos(2ka))

уравнение на амплитуду легко поддается анализу: при больших κ вол-
новая функция внутри огранниченной области будет заметно отличной
от нуля в случае стремления к нулю sin(ka). С помощью дифференци-
ирования по величине волнового вектора можно получить точки, опре-
деляющие минимумы и максимумы выражения, однако система полу-
чается громозкой и едва ли решаемой (автор работы не видит способа

разрешить относительно k выражение sin(2ka)(
2κ
k
− 1

ak
)+

2κ
ak2

cos(2ka)+

5



2 cos(2ka)− 2κ
ak2

= 0, Wolfram Mathematica также не дает аналитического
решения). Однако можно попробовать взять частную производную при
условии κ/k = const, что соответствует случаю, когда изменение 2ka на
2π не слишком изменяет отношение κ/k. В этом случае равенство нулю
производной является условием экстремумов:

2κ2

k2
sin(2ka) +

2κ
k

cos(2ka) = 0 (16)

tg(2kna) = −kn
κ

(17)

Для определенности пронумерованные значения волного вектора бу-
дем считать по формуле 2kna = nπ− arctg(kn/κ), а тогда тригонометри-
ческие функции будут равны

sin(2kna) = (−1)n+1 kn/κ√
1 + (kn/κ)2

cos(2kna) = (−1)n
1√

1 + (kn/κ)2

(18)

В этом случае минимумы будут наблюдаться в случае нечетных n:
1

A2
= 1 +

2√
1 + (kn/κ)2

+
2

(kn/κ)2
(1 +

1√
1 + (kn/κ)2

) ≈ 4κ2

k2n
(19)

А максимумы при четных n:
1

A2
= 1− 2√

1 + (kn/κ)2
+

2

(kn/κ)2
(1− 1√

1 + (kn/κ)2
) ≈ k2n

4κ2
(20)

Приближение было получено в условии малости (kn/κ)� 1 с помощью
разложения в ряд до третьего порядка.

Теперь разложим амплитуду вблизи квазистационарного уровня в со-
ответствии с соотношением

2kra = 2nπ − arctg
k

κ

1

A2
=

k2

4κ2

(
1 +

4κ4

k4
(2ka− 2kra)2

)
. (21)

Ширина квазистационарного уровня получается равной

∆E ≈
√

2mE3

2aκ
, (22)

а время жизни

τ =
2~aκ√
2mE3

(23)
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3 Двухуровневый гамильтониан 1
Условие. Рассмотрим двухуровневую систему с гамильтонианом

H =

(
ω1 ε
ε ω2

)
, (24)

где параметры не зависят от времени. Пусть при t = 0 система находи-
лась в состоянии

ψ(t = 0) =

(
1
0

)
. (25)

Найти вероятности P1(t) и P2(t) обнаружить систему в состояниях

ψ1 =

(
1
0

)
ψ2 =

(
0
1

)
(26)

в момент времени t. Рассмотреть как общий случай, так и отдельно слу-
чаи ε� |ω1 − ω2| и ε� |ω1 − ω2|

Решение. Запишем матричное уравнение, определяющее эволюцию
состояния

ĤΨ = i~
dΨ

dt
Ψ =

(
A1

A2

)
(27)

(
ω1 ε
ε ω2

)(
A1

A2

)
=

(
ω1A1 + εA2

ω2A2 + εA1

)
=


i~
dA1

dt

i~
dA2

dt

 (28)

Амплитуды квантовых состояний связаны следующим образом:

A1 =
i~
ε

dA2

dt
− ω2A2

ε
(29)

Ä2 +
i

~
(ω1 + ω2)Ȧ2 +

ε2 − ω1ω2

~2
A2 = 0 (30)

Решение этой системы для A2 будет представимо в виде

A2 = C1exp

[
− it

2~

(
ω1 + ω2 +

√
4ε2 + (ω1 − ω2)2

)]
+

+ C2exp

[
− it

2~

(
ω1 + ω2 −

√
4ε2 + (ω1 − ω2)2

)]
, (31)
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откуда в соответствии с выражением (29) можно найти A1:

A1 = C1

(
ω1 − ω2 +

√
4ε2 + (ω1 − ω2)2

2ε

)
×

exp

[
− it

2~

(
ω1 + ω2 +

√
4ε2 + (ω1 − ω2)2

)]
+

+ C2

(
ω1 − ω2 −

√
4ε2 + (ω1 − ω2)2

2ε

)
×

exp

[
− it

2~

(
ω1 + ω2 −

√
4ε2 + (ω1 − ω2)2

)]
Учитывая начальные условия,

C =
−ε√

4ε2 + (ω1 − ω2)2
= C2 = −C1. (32)

После этого первую компоненту вектора стоит переписать в виде, из
которого найти квадрат модуля не составляет труда:

A1 =
1

2
e−

it
2~ (ω1+ω2)

((
ω1 − ω2√

4ε2 + (ω1 − ω2)2
+ 1

)
e−iα

−

(
ω1 − ω2√

4ε2 + (ω1 − ω2)2
− 1

)
eiα

)
(33)

P1 = ||A1||2 =

∣∣∣∣∣
∣∣∣∣∣cos(α)− i sin(α)

ω1 − ω2√
4ε2 + (ω1 − ω2)2

∣∣∣∣∣
∣∣∣∣∣
2

=

= 1− sin2

(
t

2h

√
4ε2 + (ω1 − ω2)2

)
1

1 +

(
ω1 − ω2

2ε

)2 (34)

Это и есть вероятность нахождения системы в первом состоянии.
Нетрудно проверить, что вероятность перехода во второе состояние есть

P2 = sin2

(
t

2h

√
4ε2 + (ω1 − ω2)2

)
1

1 +

(
ω1 − ω2

2ε

)2 (35)

Очевидно, суммарная вероятность равна единице, так как других состо-
яний у системы нет.
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В случае, когда ε� |ω1 − ω2|

P1 = 1− sin2

(
εt

h

)
P2 = sin2

(
εt

h

)
(36)

С другой стороны, если пренебречь величиной ε, то вероятность остать-
ся в первом состоянии стремится к единице, что ожидаемо: для гамильто-
ниана, содержащего только диагональные элементы, эволюция каждой
компоненты вектор-функции не зависит от других компонент. Поэтому
если в начальный момент состояние было нулевым, то оно не изменится
со временем.

4 Двухуровневый гамильтониан 2
Условие. Рассмотрим двухуровневую систему с гамильтонианом

H =

(
~ω(t) ε
ε 0

)
, (37)

Причем ε - малая величина, не завиcящая от времени, а ω(t) медленно
меняется от большого положительного значения ωi > 0 до большого по
абсолютной величине отрицательного значения ωf < 0. Пусть начальное
состояние системы имело вид

ψi ≡ ψ(t→ −∞) =

(
1
0

)
Найти вероятность обнаружить систему в конечных состояниях

ψ1 =

(
1
0

)
, ψ2 =

(
0
1

)
Решение. Найдем собственные значения гамильтониана.(

~ω(t) ε
ε 0

)(
x
y

)
= λ(t)

(
x
y

)
(38)

λ1(t) =
1

2
(~ω(t)−

√
(~ω(t))2 + 4ε2) (39)

λ2(t) =
1

2
(~ω(t) +

√
(~ω(t))2 + 4ε2) (40)

Собственные вектора будут иметь следующий вид:
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x1 = λ1(t), y1 = ε (41)
x2 = λ2(t), y2 = ε (42)

Продифференцируем λ1,2 по времени. Поскольку ω(t) медленно ме-
няется со временем, то и λ1,2 подчиняется этому условию.

dλ1
dt

(t) =
~
2

(1− ~ω(t)√
(~ω(t))2 + 4ε2

)
dω

dt
(t),

dλ2
dt

(t) =
~
2

(1 +
~ω(t)√

(~ω(t))2 + 4ε2
)
dω

dt
(t) =⇒∣∣∣∣dλ1dt (t)

∣∣∣∣ ≤ ∣∣∣∣~dωdt (t)

∣∣∣∣, ∣∣∣∣dλ2dt (t)

∣∣∣∣ ≤ ∣∣∣∣~dωdt (t)

∣∣∣∣.
В этом случае имеет место адиабатическая теорема

ψ(t) =
A1√

(λ1(t))2 + ε2
exp(− i

~

t∫
t0

λ1(t
′)dt′)(λ1(t)ψ1 + εψ2)+

+
A2√

(λ2(t))2 + ε2
exp(− i

~

t∫
t0

λ2(t
′)dt′)(λ2(t)ψ1 + εψ2) (43)

В начальном состоянии собственные значения в силу большой вели-
чины ωi можно разложить в ряд

λ1(t→ −∞) =
1

2
(~ωi − ~ωi

√
1 +

4ε2

(~ωf )2
) = − ε2

~ωi
+ . . . (44)

λ2(t→ −∞) =
1

2
(~ωi + ~ωi

√
1 +

4ε2

(~ωf )2
) = ~ωi + . . . =⇒ (45)

Так как в первом слагаемом, с учетом указанного разложения, преобла-
дает второе состояние, его придется исключить.

A1 = 0, A2 = 1.
В конечный момент времени собственные вектора можно будет пред-

ставить иначе:

λ1(t→∞) =
1

2
(~ωf + ~ωf

√
1 +

4ε2

(~ωf )2
) = ~ωf + . . . (46)

λ2(t→∞) =
1

2
(~ωf − ~ωf

√
1 +

4ε2

(~ωf )2
) = − ε2

~ωf
+ . . . (47)
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Таким образом, в конечный момент времени

ψ(t→∞) =
1√

1 + ε2/(~ωf )2
exp(− i

~

t∫
t0

λ2(t
′)dt′)(− ε

~ωf
ψ1 + ψ2) (48)

P1 = 0, P2 = 1.

5 Перевернутый гармонический осциллятор
Условие. Рассмотрим "перевернутый"гармонический осциллятор с га-
мильтонианом

H = −kx
2

2
+

p2

2m

Пусть система в начальный момент находится в состоянии

ψ(x, 0) =
1√√
πb

exp(− x2

2b2
)

Найти асимптотику 〈x2(t)〉 при больших t. Сравнить с квадратом асимп-
тотики при больших t решения классических уравнений движения с на-
чальными условиями x(0) = r0, x′(0) = 0.

Решение. Для начала исследуем классический случай. Из уравние-
ний Гамильтона в этом случае выглядят просто

dp

dt
= − ∂

∂x
(
1

2

p2

m
− 1

2
kx2) = kx,

dx

dt
=

∂

∂p
(
1

2

p2

m
− 1

2
kx2) =

p

m

(49)

Далее, найдем общий вид решения уравнений движения

m
d2x

dt2
= kx

x(t) = A sinh(

√
k

m
t) +B cosh(

√
k

m
t) (50)

dx

dt
(t) =

√
k

m
(A cosh(

√
k

m
t) +B sinh(

√
k

m
t))
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После подстановки начальных условий, находим точное решение и асимп-
тотику:

x(0) = r0,
dx

dt
(0) = 0 =⇒ x(t) = r0 cosh(

√
k

m
t) (51)

(x(t→∞))2 ∼ (
r0
2

)2 exp(2

√
k

m
t). (52)

Теперь займемся квантовым случаем, соответствующим гамильтониану

∂ψ

∂t
(x, t) = − ~2

2m

∂2ψ

∂x2
(x, t)− 1

2
kx2ψ(x, t) (53)

Для нахождения средних перейдем к представлению Гейзенберга:

x̂(t) = exp(
i

~
Ĥt)x exp(− i

~
Ĥt)

p̂(t) = exp(
i

~
Ĥt)(−i~ ∂

∂x
) exp(− i

~
Ĥt) (54)

Ĥ = exp(
i

~
Ĥt)Ĥ exp(− i

~
Ĥt) =

(p̂(t))2

2m
− 1

2
k(x̂(t))2

Запишем уравнения Гейзенберга

dx̂

dt
(t) =

i

~
[Ĥ, x̂(t)] =

i

~
[
(p̂(t))2

2m
, x̂(t)] =

= − i
~

1

2m
(p̂(t)[x̂(t), p̂(t)] + [x̂(t), p̂(t)]p̂(t)) =

p̂(t)

m
(55)

;

dp̂

dt
(t) =

i

~
[Ĥ, p̂(t)] = − i

~
[
1

2
k(x̂(t))2, p̂(t)] =

= − i
~
k

2
(x̂(t)[x̂(t), p̂(t)] + [x̂(t), p̂(t)]x̂(t)) = kx̂(t) (56)

Из них видно, что
d2x̂

dt2
(t) =

k

m
x̂(t),

d2p̂

dt2
(t) =

k

m
p̂(t), начальными услови-

ями следует считать x̂(0) = x, p̂(0) = −i~ ∂
∂x

, тогда решения уравнений
будут выглядеть следующим образом:

x̂(t) =
1√
mk

sinh(

√
k

m
t)(−i~ ∂

∂x
) + x cosh(

√
k

m
t), (57)

p̂(t) =
√
mkx sinh(

√
k

m
t) + cosh(

√
k

m
t)(−i~ ∂

∂x
). (58)
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Осталось только вычислить средний квадрат расстояния: 〈(x(t))2〉 =
∞∫
−∞

x2 |ψ(x, t)|2 dx =

=
∞∫
−∞

(exp(− i
~
Ĥt)ψ(x, 0))∗x2 exp(− i

~
Ĥt)ψ(x, 0)dx =

=
∞∫
−∞

(ψ(x, 0))∗ exp(
i

~
Ĥt)x2 exp(− i

~
Ĥt)ψ(x, 0)dx =

=
∞∫
−∞

(ψ(x, 0))∗(x̂(t))2ψ(x, 0)dx =
∞∫
−∞
|x̂(t)ψ(x, 0)|2 dx,

x̂(t→∞)ψ(x, 0) ∼ 1

2
exp(

√
k

m
t)(

1√
mk

(−i~∂ψ
∂x

(x, 0)) + xψ(x, 0))

∂ψ

∂x
(x, 0) = − 1√√

πb

x

b2
exp(− x2

2b2
) =⇒

1√
mk

(−i~∂ψ
∂x

(x, 0)) + xψ(x, 0)) =
1√√
πb

x

b
exp(− x2

2b2
)(

i~√
mk

1

b
+ b) =⇒

∣∣∣∣ 1√
mk

(−i~∂ψ
∂x

(x, 0)) + xψ(x, 0))

∣∣∣∣2 =
1√
πb

x2

b2
exp(−x

2

b2
)(

~2

mk

1

b2
+ b2)

〈
(x(t→∞))2

〉
∼ 1

4
√
π

(
~2

mk

1

b2
+ b2) exp(2

√
k

m
t)

∞∫
−∞

x2

b2
exp(−x

2

b2
)
dx

b
(59)

Для вычисления интеграла сделаем замену s =
x2

b2
, ds = 2

xdx

b2
,

2

∞∫
0

x2

b2
exp(−x

2

b2
)
dx

b
=

∞∫
0

√
s exp(−s)ds = Γ(

1

2
) =

√
π

2

Теперь можно записать окончательный результат для квантовой задачи:〈
(x(t→∞))2

〉
∼ 1

8
(
~2

mk

1

b2
+ b2) exp(2

√
k

m
t) (60)

Заметим, множитель, обуславливающий эволюцию со временем полно-
стью совпадает с аналогичным в расчетах для классический частицы.
Как обычно, переходя к пределу ~→ 0, нетрудно заметить, что началь-

ным условиям соответствует случай r0 =
b√
2
, что является среднеквад-

ратическим отклонением для начальной плотности вероятности.
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6 Движение частиц по окружности
Условие. Две частицы массы m и заряда q каждая могут свободно дви-
гаться по окружности радиуса R. Найти низколежащие уровни системы

при R� ~2

mq2
.

Решение. Перейдем в полярные координаты x1 = R cosϕ1, y1 =
R sinϕ1, x2 = R cosϕ2, y2 = R sinϕ2, тогда расстояние между двумя ча-
стицами будет равно

ρ12 =
√

(x1 − x2)2 + (y1 − y2)2 = 2R |sin((ϕ1 − ϕ2)/2)|

Начнем с рассмотрения классического случая, в этом случае гамиль-
тониан

H =
1

2
mR2(ϕ̇1)

2 +
1

2
mR2(ϕ̇2)

2 +
q2

2R |sin((ϕ1 − ϕ2)/2)|
(61)

можно с помощью замены α =
1

2
(ϕ1−ϕ2)−

π

2
, β =

1

2
(ϕ1 +ϕ2), I = 2mR2

привести к виду

H =
1

2
I(α̇)2 +

1

2
I(β̇)2 +

q2

2R |cosα|
. (62)

Теперь, вводя канонически сопряженные моменты импульса

L(α) =
∂H

∂α̇
= Iα̇, L(β) =

∂H

∂β̇
= Iβ̇,

окончательно представим гамильтониан в виде

H =
1

2I
(L(α))2 +

1

2I
(Lβ)2 +

q2

2R |cosα|
. (63)

В квантовом же случае будем иметь

Ĥ =
1

2I
(L̂(α))2 +

1

2I
(L̂(β))2 +

q2

2R |cosα|
, L̂(α) = −i~ ∂

∂α
, L̂(β) = −i~ ∂

∂β
Таким образом, имеем уравнение Шредингера в новом виде:

i~
∂ψ

∂t
(α, β, t) = −~2

2I

∂2ψ

∂α2
(α, β, t)−

− ~2

2I

∂2ψ

∂β2
(α, β, t) +

q2

2R |cosα|
ψ(α, β, t). (64)
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Очевидно, волновую функцию стоит искать в виде ψ(α, β, t) = u(α)v(β) exp(− i
~
Et).

Подставим ее в дифференциальное уравнение:

Eu(α)v(β) = −~2

2I

d2u

dα2
(α)v(β)− ~2

2I
u(α)

d2v

dβ2
(β) +

q2

2R |cosα|
u(α)v(β) =⇒

−~2

2I

1

u(α)

d2u

dα2
(α)− ~2

2I

1

v(β)

d2v

dβ2
(β) +

q2

2R |cosα|
= E

Разделим переменные:

−~2

2I

d2u

dα2
(α) +

q2

2R |cosα|
u(α) = E(α)u(α) (65)

−~2

2I

d2v

dβ2
(β) = E(β)v(β) (66)

Полная энергия состояния будет разлагаться на части, соответствую-
щие колебаниям и свободному орбитальному движению E = E(α) +E(β).
Учитывая то, что уровни низколежащие, частицы будут находиться все
время в положении наибольшего удаления друг от друга. Таким образом

α� 1 =⇒ 1

|cosα|
=

1

cosα
= 1 +

α2

2
+ . . .

−~2

2I

d2u

dα2
(α) +

q2

4R
α2u(α) = (E(α) − q2

2R
)u(α). (67)

Действительно, это уравнение колебаний, так что

E(α)
n =

q2

2R
+ ~

q

2R

n+ 1/2√
mR

(68)

un(α) = Hn(

√
q

~
√
mRα) exp(−1

2

q

~
√
mRα2). (69)

Для второй компоненты E(β):

−~2

2I

d2v

dβ2
(β) = E(β)v(β), v(β) = exp(2πkiβ) (70)

E
(β)
k = 4π2 ~2

2I
k2 =

π2~2

mR2
k2 (71)
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Заметим, что в соответствии с условием R� ~2

mq2
,

q2

2R
� ~

q

2R
√
mR
� π2~2

mR2

так что общая картина энергетического спектра, будет представлять
эквидистантные уровни колебательного движения, пространство меж-
ду которыми будет заполнено подуровнями с дополнительной энергией
вращения системы как целого.

7 Движение частиц на плоскости
Условие. Рассмотрим частицу, движущуюся на плоскости в потенциале

U(x, y) =
1

2
ky2 +

1

2
ε(x)y2,

где ε(x) - некоторая ограниченная функция, отличная от нуля в конеч-
ной области переменной x. Пусть при x→ −∞ волновая функция имеет
вид Ψ(x, y) = ψ0(y) exp(iqx), где ψ0(y) - волновая функция основного со-
стояния осциллятора. Считая ε(x) малой величиной, найти вероятность
перехода осциллятора в первое и второе возбужденные состояния при
x→∞.

Решение. Для начала запишем стационарное уравнение Шрединге-
ра. Интересно, что гамильтониан, вообще говоря, в этой задаче со вре-
менем не меняется.

− ~2

2m

∂2ψ

∂x2
(x, y)− ~2

2m

∂2ψ

∂y2
(x, y) +

1

2
ky2ψ(x, y)

+
1

2
ε(x)y2ψ(x, y) = Eψ(x, y) (72)

Энергия будет сохраняться и ее несложно вычислить. С учетом на-
чального состояния ψ(x → −∞, y) = ψ0(y) exp(iqx), это сумма энергий
дополнительной фазы и основного состояния осциллятора.

E =
~2q2

2m
+

~
2

√
k

m
. (73)

Разложим полную волновую функцию по состояниям гармонического
осциллятора оси y.

Ĥ0 = − ~2

2m

∂2

∂y2
+

1

2
ky2 = ~

√
k

m
(â+y ây +

1

2
) (74)
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ây =

√
2

2
(

√
1

~
√
mky +

√
~√
mk

∂

∂y
), â+y =

√
2

2
(

√
1

~
√
mky −

√
~√
mk

∂

∂y
).

ψ(x, y) =
∞∑
n=0

An(x)ψn(y) (75)

Чтобы определитьAn(x) подставим полученный ряд в уравнениеШре-
дингера:

− ~2

2m

∞∑
n=0

d2An
dx2

(x)ψn(y) +
∞∑
n=0

~
√
k

m
(n+

1

2
)An(x)ψn(y)

+
1

2

∞∑
n=0

ε(x)An(x)y2ψn(y) = (
~2q2

2m
+

~
2

√
k

m
)
∞∑
n=0

An(x)ψn(y) (76)

В терминах опереторов рождения и уничтожения y2 представляется
в виде

y2 =
1

2

~√
mk

(ây + â+y )2 =
1

2

~√
mk

((ây)
2 + âyâ

+
y + â+y ây + (â+y )2) =

=
1

2

~√
mk

((ây)
2 + 2â+y ây + 1 + (â+y )2) (77)

1

2

∞∑
n=0

ε(x)An(x)y2ψn(y) =
1

4

~√
mk

(
∞∑
n=2

√
n(n− 1)ε(x)An(x)ψn−2(y)+

+
∞∑
n=0

√
(n+ 2)(n+ 1)ε(x)An(x)ψn+2(y) +

∞∑
n=0

(2n+ 1)ε(x)An(x)ψn(y)) =

=
1

4

~√
mk

ε(x)(A0(x)+
√

2A2(x))ψ0(y)+
1

4

~√
mk

ε(x)(3A1(x)+
√

6A3(x))ψ1(y)+

+
1

4

~√
mk

ε(x)(
√

2A0(x) + 5A2(x) +
√

12A4(x))ψ2(y)+

+
1

4

~√
mk

∞∑
n=3

ε(x)(
√
n(n− 1)An−2(x) + (2n+ 1)An(x)+

+
√

(n+ 2)(n+ 1)An+2(x))ψn(y)
Коэффициенты при соответствующих волновых функциях гармони-

ческого осциллятора должны быть равны:

− ~2

2m

d2A0

dx2
(x) +

1

4

~√
mk

ε(x)(A0(x) +
√

2A2(x)) =
~2q2

2m
A0(x) (78)
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− ~2

2m

d2A1

dx2
(x) + ~

√
k

m
A1(x)+

+
1

4

~√
mk

ε(x)(3A1(x) +
√

6A3(x)) =
~2q2

2m
A1(x) (79)

− ~2

2m

d2A2

dx2
(x) + 2~

√
k

m
A2(x)+

+
1

4

~√
mk

ε(x)(
√

2A0(x) + 5A2(x) +
√

12A4(x)) =
~2q2

2m
A2(x) (80)

Согласно полученным уравнениям, все нечетные коэффициенты рав-
ны нулю.

Сделаем замену, введя новую переменную α:
~2

2m
α2 = 2~

√
k

m
− ~2q2

2m
, =⇒ α =

√
4

~
√
mk − q2. Стоит отметить, что

подкоренное выражение обнуляется в случае 2~
√
k

m
=

~2q2

2m
, где ~q мож-

но считать за импульс, соответствующий дополнительной фазе началь-
ного состояния. Это условие обеспечивает равенство кинетической энер-
гии частицы с волновым вектором q и энергии перехода с основного на
второе состояние гармонического осциллятора.

По теории возмущений
A0(x) = exp(iqx) + . . . =⇒

− ~2

2m

d2A2

dx2
(x) +

~2

2m
α2A2(x) +

√
2

4

~√
mk

ε(x) exp(iqx) = 0 (81)

−d
2A2

dx2
(x)+α2A2(x)+

√
2

2

1

~

√
m

k
ε(x) exp(iqx) = 0, A2(x→ −∞) = 0 =⇒

Используя метод вариации постоянной, получим решение дифферен-
циального уравнения

A2(x) =

√
2

4α

1

~

√
m

k

x∫
−∞

exp(−α(x− x′))ε(x′) exp(iqx′)dx′+

+

√
2

4α

1

~

√
m

k

∞∫
x

exp(α(x− x′))ε(x′) exp(iqx′)dx′ =⇒ (82)

P1 = 0, P2 = lim
x→∞
|A2(x)|2.
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8 Возбуждение осциллятора внешней силой
Условие. На гармонический осциллятор массы m и жесткости k в тече-
ние времени 0 < t < t0 действует зависящая от времени сила F (t) (при
этом F = 0 при t < 0 и t > t0). Найти вероятность перехода осциллятора
с основного состояния на n-e возбужденное.

Решение. Запишем уравнениеШредингера для гамильтонианаH(t) =
1

2

p2

m
+

1

2
kx2 − F (t)x:

i~
∂ψ

∂t
(x, t) = − ~2

2m

∂2ψ

∂x2
(x, t) + (

1

2
kx2 − F (t)x)ψ(x, t) (83)

Начальное состояние ψ(x, 0) = 4

√
1

π~
√
mk exp(− 1

2~
√
mkx2).

Целесообразно ввести операторы рождения и уничтожения и перепи-
сать гамильтониан в новом удобном виде

â =

√
2

2
(

√
1

~
√
mkx+

√
~√
mk

∂

∂x
), â+ =

√
2

2
(

√
1

~
√
mkx−

√
~√
mk

∂

∂x
) =⇒

Ĥ(t) = ~
√
k

m
(â+â+

1

2
)− 1

2

√
2~√
mk

F (t)(â+ â+) (84)

В дальнейшем осуществим переход к картине Гейзенберга с помощью
унитарного оператора U(t):

i~
dÛ

dt
(t) = Ĥ(t)Û(t), Û(0) = 1.

Искомая вероятность перехода на n-ый уровень будет иметь вид

P0n =
∣∣∣〈n| Û(t0) |0〉

∣∣∣2 =
1

n!

∣∣∣〈0| ânÛ(t0) |0〉
∣∣∣2 (85)

Воспользуемся разложением

Û(t0) |0〉 =
∞∑
l=0

Al(â
+)l |0〉

Коэффициенты данного разложения находятся из соотношений

|0〉 =
∞∑
l=0

AlÛ
+(t0)(â

+)l |0〉 =⇒
∞∑
l=0

AlâÛ
+(t0)(â

+)l |0〉 = 0 (86)

Операторы рождения и уничтожения теперь зависят от времени

b̂(t) = Û(t)âÛ+(t) =⇒ i~
db̂

dt
(t) = Û(t)[Ĥ(t), â]Û+(t)
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,

[Ĥ(t), â] = −~
√
k

m
â+

1

2

√
2~√
mk

F (t)

Из уравнений Гейзенберга получается дифференциальное уравнение
для определения явного вида нового оператора b̂(t), который в началь-
ный момент принимает значение â.

−i~db̂
dt

(t) = −~
√
k

m
b̂(t) +

1

2

√
2~√
mk

F (t), b̂(0) = â (87)

Решая методом вариации постоянной, найдем:

b̂(t) = (â+
i

2~

√
2~√
mk

t∫
0

F (t′) exp(i

√
k

m
t′)dt′) exp(−i

√
k

m
t) (88)

В дальнейшем будем пользоваться заменой

α(t) =
i

2~

√
2~√
mk

t∫
0

F (t′) exp(−i
√
k

m
t′)dt′

.
Коммутатор новых и старых операторов, вообще говоря, не меняется

[b̂(t), â+] = 1.
Вернемся к разложению для отыскания коэффициентов Al
∞∑
l=0

Alb̂(t0)(â
+)l |0〉 = 0 =⇒

∞∑
l=0

Al(â
+)lb̂(t0) |0〉+

∞∑
l=1

lAl(â
+)l−1 |0〉 = 0 =⇒

∞∑
l=0

α(t0)Al(â
+)l |0〉+

∞∑
l=0

(l + 1)Al+1(â
+)l |0〉 = 0 =⇒

(l + 1)Al+1 − α(t0)Al = 0 =⇒ Al+1 = α(t0)
Al
l + 1

=⇒ Al =
1

l!
(α(t0))

lA0.
Теперь определим сумму квадратов коэффициентов

〈0| Û(t0)Û
+(t0) |0〉 = 〈0|0〉 = 1 =⇒

∞∑
l=0

|Al|2 〈0| âl(â+)l |0〉 = 1 =⇒
∞∑
l=0

l! |Al|2 = 1 =⇒ |A0|2
∞∑
l=0

1

l!
|α(t0)|2l = 1 =⇒

A2
0 exp(|α(t0)|2) = 1 =⇒ A0 = exp(−1

2
|α(t0)|2). (89)
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Û(t0) |0〉 = exp(−1

2
|α(t0)|2)

∞∑
l=0

1

l!
(α(t0))

l(â+)l |0〉 =⇒

Теперь можно записать вероятность перехода P0n =
1

n!

∣∣∣〈0| ânÛ(t0) |0〉
∣∣∣2 =

=
1

n!
exp(− |α(t0)|2)

∣∣∣∣∞∑
l=0

1

l!
(α(t0))

l 〈0| ân(â+)l |0〉
∣∣∣∣2 =

=
1

n!
|α(t0)|2n exp(− |α(t0)|2)

∣∣∣∣ 1

n!
〈0| ân(â+)n |0〉

∣∣∣∣2
P0n =

1

n!
|α(t0)|2n exp(− |α(t0)|2) (90)

9 Заключение
Получены аналитические выражения характеристик, соответствующих
частным случаям эволюции квантовых систем с переменным гамильто-
нианом.
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